Artificial

TSAM: A Two-Stream Attention Model for Causal Emotion Entailment

Duzhen Zhang*, Zhen Yang, Fandong Meng, Xiuyi Chen, Jie Zhou Pattern Recognition Center, WeChat AI, Tencent Inc, Beijing, China {bladedancer957,hugheren.chan}@gmail.com {zieenyang,fandongmeng,withtomzhou}@tencent.com

Code: https://github.com/BladeDancer957/TSAM

Data: https://github.com/declare-lab/RECCON/tree/main/data

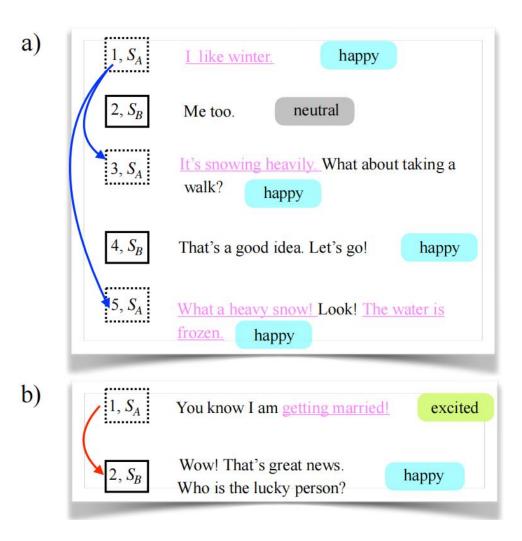
2023. 4. 15 • ChongQing

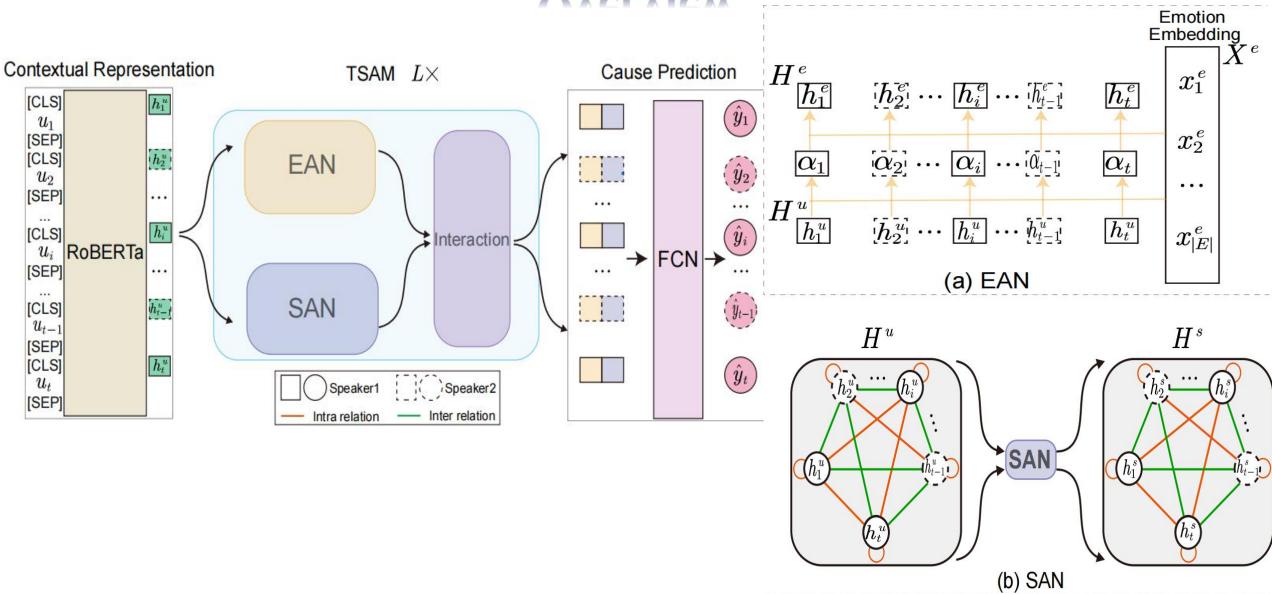
— **COLING 2022**

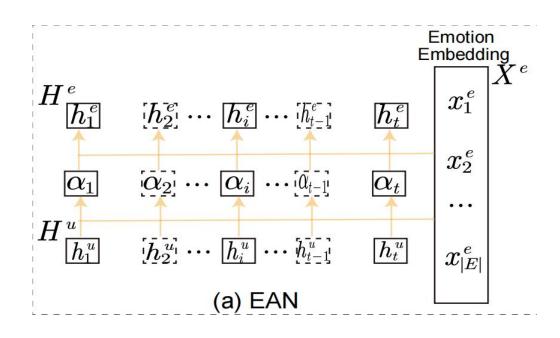
ATAI

Advanced Technique of Artificial Intelligence Artificial

- 1.Introduction
- 2.Overview
- 3. Methods
- 4. Experiments



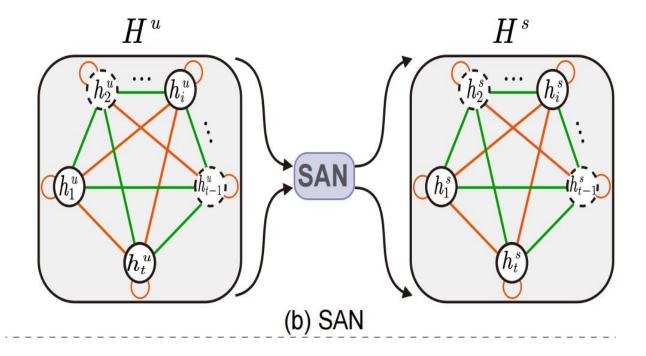



Introduction

Overview

$$\boldsymbol{x}_k^e = \operatorname{Embed}(e_k) \in \mathbb{R}^{d_h}$$
 (1)

$$H^e = attention(Q, K, V) = \alpha V$$
 (2)

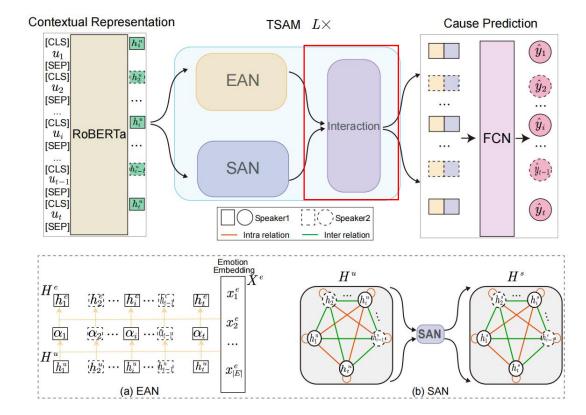

$$\alpha = softmax(\frac{QK^T}{\sqrt{d_h}})$$
 (3)

$$\mathbf{H}^e = concat(head_1, ..., head_m)$$
 (4)

$$head_j = attention(\mathbf{Q}\mathbf{W}_j^Q, \mathbf{K}\mathbf{W}_j^K, \mathbf{V}\mathbf{W}_j^V)$$
 (5)

$$\boldsymbol{H}^e = \tilde{\boldsymbol{X}}^e \tag{6}$$

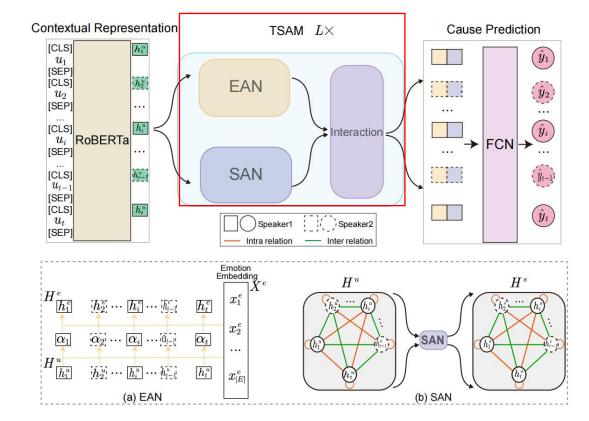
where
$$Q = H^u, K = V = X^e$$
,



$$\alpha_{ijr} = softmax_i(LRL(\boldsymbol{a}_r^T[\boldsymbol{W}_r\boldsymbol{h}_i^u; \boldsymbol{W}_r\boldsymbol{h}_j^u])) \quad (7)$$

$$\boldsymbol{h}_{ir} = \sum_{j \in \mathcal{N}^r(i)} \alpha_{ijr} \boldsymbol{W}_r \boldsymbol{h}_j^u \tag{8}$$

$$\boldsymbol{h}_{i}^{s} = \sum_{r \in \mathcal{R}} \boldsymbol{h}_{ir} \tag{9}$$

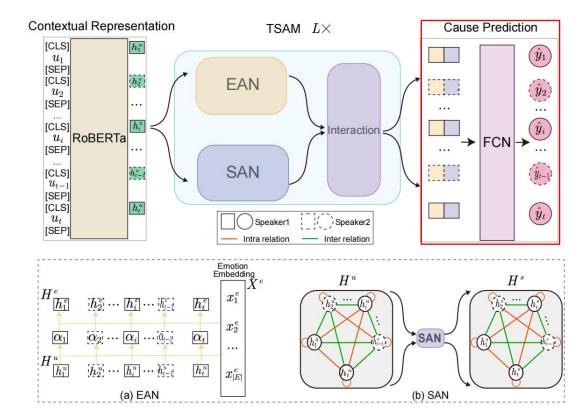

$$\mathbf{A}_1 = softmax(\mathbf{H}^e \mathbf{W}_1 (\mathbf{H}^s)^T)$$
 (10)

$$\mathbf{A}_2 = softmax(\mathbf{H}^s \mathbf{W}_2(\mathbf{H}^e)^T) \tag{11}$$

$$\boldsymbol{H}^{e'} = \boldsymbol{A}_1 \boldsymbol{H}^s \tag{12}$$

$$\boldsymbol{H}^{s'} = \boldsymbol{A}_2 \boldsymbol{H}^e \tag{13}$$

$$\boldsymbol{H}_{l}^{e} = \mathbf{EAN}(\boldsymbol{E}_{l}, \boldsymbol{X}^{e}) \tag{14}$$


$$\boldsymbol{H}_{l}^{s} = \mathbf{SAN}(\boldsymbol{S}_{l}) \tag{15}$$

$$\boldsymbol{H}_{l}^{e'}, \boldsymbol{H}_{l}^{s'} = \operatorname{Interaction}(\boldsymbol{H}_{l}^{e}, \boldsymbol{H}_{l}^{s})$$
 (16)

$$E_{l+1}, S_{l+1} = H_l^{e'}, H_l^{s'}$$
 (17)

where $E_0 = S_0 = H^u$. The TSAM can be stacked in L layers and $l \in [0, L-1]$.

$$\boldsymbol{l}_i = ReLU(\boldsymbol{W}_1[\boldsymbol{e}_i^L; \boldsymbol{s}_i^L] + \boldsymbol{b}_1)$$
 (18)

$$\hat{y}_i = sigmoid(\mathbf{W}_2 \mathbf{l}_i + b_2) \tag{19}$$

Sta	tistics		RECCON-DD
	Troin	Positive	7269
	Train	Negative	20646
Data	Dev	Positive	347
Distributions		Negative	838
	Test	Positive	1894
		Negative	5330
	No	Context	43%
Cause	Inter		32%
Type	Intra		9%
Distributions	Hybrid		11%
Unm		entioned	5%

Table 1: Statistics of the RECCON-DD dataset. *No Context*: The cause is present within the target utterance itself; *Inter*: Inter-speaker emotional influences; *Intra*: Intra-speaker emotion influences (Self-Contagion); *Hybrid*: Inter and Intra can jointly cause the emotion of an utterance; *Unmentioned*: Some instances have no explicit emotion causes in the conversational history.

# Model	W/O CH		W/ CH				
	Pos. F1	Neg. F1	macro F1	Pos.F1	Neg.F1	macro F1	
0	$INDEP_{base}$	56.64	85.13	70.88	64.28	88.74	76.51
1	$INDEP_{large}$	50.48	87.35	68.91	66.23	87.89	77.06
2	$JOINT_{base}$	-	(=	=	66.61	89.11	77.86
3	$JOINT_{large}$	-1	-	=	68.30	89.16	78.73
4	Ours _{base}	17.1	2=		68.59	89.75	79.17
5	Ours _{large}	-1	-	-	70.00^{\dagger}	90.48^{\dagger}	80.24^{\dagger}

Table 2: Performance of our model and baselines on the test set of RECCON-DD. Bold font denotes the best performance. "Ours" denotes the proposed model without removing any module ("Ours" = "JOINT" + TSAM). "†" denotes that $Ours_{large}$ is statistically significant (Koehn, 2004) better than $INDEP_{large}$ W/ CH (p-value < 0.05).

Emotion Information	Pos. F1	Neg. F1	macro F1
No	68.40	89.80	79.10
DAEE	68.90	90.03	79.47
EAN	70.00	90.48	80.24

Table 3: Comparison of different ways of incorporating emotion information. *No*: no emotion information incorporated; *DAEE*: incorporating the emotion information with direct application emotional embedding.

Speaker Information	Pos. F1	Neg. F1	macro F1
Not Consider	67.99	89.42	78.71
Consider	70.00	90.48	80.24

Table 4: Results on experiments whether considering speaker information or not in SAN.

	Pos. F1	Neg. F1	macro F1
W/O Interaction	68.18	88.93	78.56
W/ Interaction	70.00	90.48	80.24

Table 5: Results on experiments whether removing interaction module or not in TSAM.

Models	Intra	Inter	
W/O TSAM	62.06	72.67	
W/TSAM	63.82	74.81	

Table 6: Accuracy on the collected samples. *Intra*: Intra-speaker emotional influences; *Inter*: Interspeaker emotional influences.

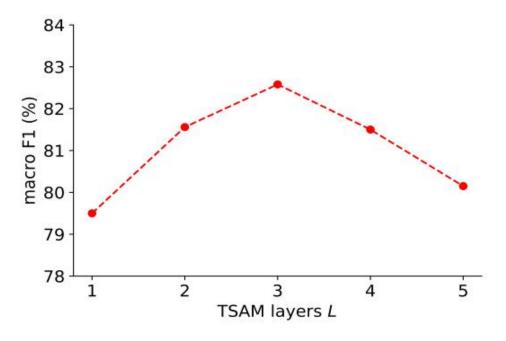


Figure 3: Results of $Ours_{large}$ with various TSAM layers on the development set of RECCON-DD.

Thanks!